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Abstract. Elastic strain energy under some conditions provides the major contribution to the
total energy of a film growing on a substrate from condensing vapour. Polycrystalline films
grown with intrinsic stress induced by energetic bombardment are expected to show orientations
which minimize total energy. Even for a cubic crystal in a non-hydrostatic stress field the
energy is a function of the relative orientation of the stress field and the crystallographic axes.
The Gibbs free energy is minimized under constant stress and temperature conditions at thermal
equilibrium. In this paper we derive expressions for the Gibbs free energy of a cubic crystal
in uniaxial and biaxial stress fields and find the conditions under which it is a minimum. The
sign of the expressionδ = s11 − s12 − 1

2s44 is the quantity which determines the behaviour of a
cubic crystal and if negative, predicts that the [111] direction of the crystal will align with the
principal stress of a uniaxial stress field and will lie normal to the plane of principal stresses
in a biaxial stress field. Experimental evidence is presented which shows that titanium nitride,
TiN, which has a negative value ofδ, obeys these predictions. Ifδ is positive, then the [100]
direction of the crystal obeys the above rules rather than the [111] direction.

1. Introduction

All crystalline materials are elastically anisotropic, even those of cubic symmetry. This
anisotropy gives rise to an orientation dependence of the elastic strain energy of a crystalline
substance when it is placed in a non-hydrostatic stress field. This effect is of special interest
in thin-film growth, where atoms condense onto a substrate in such a way as to minimize
the total energy of the system in the limited time during which the atoms are mobile before
being frozen into a fixed position. In this paper we develop theory to enable the evaluation
of the elastic strain energy in a two-dimensional orbiaxial stress field for a cubic crystal
and apply it to the case of a titanium nitride film. Titanium nitride is a cubic material, well
studied in thin-film form because of its wear-resistant and decorative applications and often
prepared under strong biaxial stress conditions. An aim of this work is to prove that the
elastic strain energy for TiN is in fact a minimum when the [111] direction lies normal to
the film, therefore explaining the commonly observed preferred orientation in this material.

The thermodynamics of elastic strain energy in crystalline structures has been discussed
in the book by Nye [1]. The book by Khachaturyan [2] contains examples of the application
of thermodynamic theory to structural phase transformations and discusses examples of the
tweedstructure in alloys containing tetragonal precipitates. Elastic strain energy forms an
important, but not the only contribution to the total energy of a film on a substrate. In this
paper, however, we are interested in these cases where it is the dominant contribution. We
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will first derive the conditions on the elastic constants of a cubic material which determine
the orientation of the crystal axes relative to the stress field in order to minimize the elastic
strain energy. We consider only uniaxial stress fields and biaxial stress fields where the
principal stresses are equal. The link between preferred orientation in thin films and the
presence of stress in the films has been noted in previous work [3, 4], but exact results
for the case of a biaxial stress field are not currently available in the literature, to our
knowledge. A number of investigations of the preferred orientation in thin films of titanium
nitride have been carried out, but in order to compare the results with theory, the stresses
present need to be characterized. To this end we have made a number of new measurements
of the stress in TiN films deposited by an ion plating technique, have correlated them with
the preferred orientation and have compared the results with theoretical predictions.

The origin of stresses in thin films is a subject about which much is known as a result
of experimental observations as well as computer simulations using molecular dynamics
techniques. The energy of the condensing species during a physical vapour deposition
process is the most important single parameter which determines the level of built-in or
intrinsic stress in the film. Growth at thermal energies of less than 1 eV generally produces
films under tensile stress, while deposition at energies of some tens of eV generally produces
films under compressive stress. Since the forces sustaining the stress in a thin film are
applied by the substrate, it is expected that the stress field will be a biaxial one, or at
least approximately so. Useful empirical theories to describe the energy dependence of the
stress level in thin films have been developed by [5] and [6]. These reproduce the common
experimental observation of a stress level which, with increasing energy, changes from
tensile to compressive, reaches a maximum compressive value and with further increase in
energy shows a steady decrease, while remaining compressive. The molecular dynamics
work of [7] reproduces this behaviour and gives insights into the processes giving rise
to stress. Equilibrium thermodynamics has a role to play in the study of film growth,
as it enables the use of the large data base on the equilibrium properties of solids to
be used to understand the results of film growth. At the outset, however, it must be
understood that the processes occurring on short time-scales during film growth do not
achieve thermal equilibrium, but that the direction in which the structures are evolving
during the condensation process may be predicted by equilibrium thermodynamics.

The possibility that kinetic factors in film growth may be more important in determining
preferred orientation than energy minimization has been raised recently [8] in connection
with films grown under low-stress conditions. Under these conditions the films contain
voids and show a pronounced columnar structure. It is conceivable that columns containing
crystals will show different growth rates depending on the orientation of the crystals within
them so that crystal orientations with high growth rates will become dominant. Here we
are not concerned with cases where the films show columnar structure and associated void
spaces, as we wish to discuss the case where elastic strain energy in the bulk is the main
contribution to the total energy. The total energy will contain contributions from the surface
energy of the free surface of the film and the interface energy of the film–substrate interface
as well as from the elastic strain energy in the bulk. Columnar structure, if present, would
result in a large surface energy contribution from the internal surfaces of the columns. In
the limit of thick films under high levels of stress and not containing voids, the bulk elastic
strain energy will become dominant and this is the case we wish to consider here. After
discussing the case of a crystal of any symmetry in a general stress field in section 2,
we consider the specific cases of a cubic crystal in uniaxial and biaxial fields. Finally, we
consider the application to the problem of preferred orientation in titanium nitride thin films.



The orientation dependence of strain energy in crystals 5885

2. Gibbs free energy of a crystal in a stress field

The Gibbs free energy is the appropriate thermodynamic function for systems at constant
temperature and constant pressure. In cases where the applied stress is not hydrostatic
pressure, but a general stress field, the Gibbs free energy may be generalized following Nye
[1] to

G = U −
∑
i,j

εij σij − T S (1)

whereU is the internal energy,S the entropy,T the temperature andεij is the strain tensor
of the substance. The differential change inG is

dG = dU −
∑
i,j

εij dσij −
∑
ij

dεij σij − T dS − S dT . (2)

At constant temperature,

dG = −
∑
i,j

εij dσij (3)

using the first law of thermodynamics to cancel some terms. It is convenient to write the
stress tensor as the product of a scalar magnitude and a tensor with a constant trace of order
unity so that, for example, the differential tensor dσij is written σ̂ij dσ so that

dG = −
∑
i,j

εij σ̂ij dσ = −
∑
i,j,k,l

sijkl σ̂ij σ̂klσ dσ (4)

wheresijkl is the elastic compliance tensor which has a form determined by the symmetry
of the crystal. The Gibbs free energy is assigned the valueG0 at a datum condition of
the substance at a convenient temperatureT0 and convenient stress level. The datum stress
level is conveniently taken as zero. To findG at a given stress levelσ we integrate the
stress from zero toσ :

G = G0 +
∫ σ

0
dG = G0 − 1

2
σ 2

( ∑
i,j,k,l

sijkl σ̂ij σ̂kl

)
. (5)

It is convenient to use a notation in which the fourth-rank compliance tensor is replaced by
a 6× 6 matrix and the second-rank stress tensor by a 1× 6 vector. We can then write the
expression for the Gibbs free energy in matrix form as

G = G0 − 1

2
σ 2[σ̂sσ̂T]. (6)

For a cubic substance, the compliance matrixs is


s11 s12 s12

s12 s11 s12

s12 s12 s11

s44

s44

s44

. (7)
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3. A cubic crystal in a uniaxial stress field

For a uniaxial stress with forces exerted parallel to thex-axis (the crystallographic [100]
direction), the stress tensor expressed as a 1× 6 vector has the form̂σ′ = [1, 0, 0, 0, 0, 0]
and the Gibbs free energy reduces to the simple form

G100 = G0 − 1

2
σ 2s11. (8)

For a general orientation of the stress relative to the crystallographic axes, the stress
tensorσ̂ may be rotated in three dimensions into a new stress tensorσ̂′ using a rotational
transformation. This rotation is specified by the matrixaij .

The Gibbs free energy of the crystal under the rotated stress field is

G = G0 − 1

2
σ 2[σ̂′sσ̂′ T] (9)

where σ̂′ = [a2
11, a

2
21, a

2
31, a31a21, a31a11, a21a11] and T denotes the transpose. This form

for σ̂′ is satisfied in eight different ways, corresponding to the eight symmetry-equivalent
stresses:

σ̂′ = [σ ′
1, σ

′
2, σ

′
3, ±

√
σ ′

1σ
′
2, ±

√
σ ′

3σ
′
1, ±

√
σ ′

2σ
′
1] (10)

where theσ ′
i are the diagonal components ofσ̂′. G has the same value for each of the eight

possible choices of sign for the last three entries in (11), and has the value

G = G0 − 1

2
σ 2

[
s11(σ

′
1

2 + σ ′
2

2 + σ ′
3

2
) − 2

(
s11 − s12 − 1

2
s44

)
(σ ′

1σ
′
2 + σ ′

2σ
′
3 + σ ′

3σ
′
1)

]
.

(11)

Since the trace of the stress tensor is invariant under rotation and is equal to unity:

G = G0 − 1

2
σ 2

[
s11 − 2

(
s11 − s12 − 1

2
s44

)
(σ ′

1σ
′
2 + σ ′

2σ
′
3 + σ ′

1σ
′
3)

]
(12)

this can be written as a sum of orientation-independent and orientation-dependent terms

G = G0
′ + σ 2

(
s11 − s12 − 1

2
s44

)
C. (13)

The quantityG0
′ is orientation independent while the quantity

C = σ ′
1σ

′
2 + σ ′

2σ
′
3 + σ ′

1σ
′
3 (14)

contains the orientation dependence.C has a minimum value of zero when the uniaxial
stress is aligned with a [100] direction and a maximum value of1

3 when it is aligned with
a [111] direction. If the value ofδ = s11 − s12 − 1

2s44 is less than zero, thenG will be
minimized when the stress is aligned with a [111] direction; whenδ is positive,G will be
minimized when the stress is aligned with a [100] direction. This result is closely related to
that for the orientation dependence of Young’s modulus in a cubic material. If the quantity
δ is positive, then the Young’s modulus is minimum along [100] and maximum along [111]
and vice versa whenδ is negative [1]. It is then intuitively expected that the elastic energy
will be minimized when the most compliant direction of the crystal is aligned with the
stress axis, as the above result forG shows. For titanium nitride, the quantitiess11, s12 and
s44 are known (see table 1) and, in common with other materials with the rock-salt crystal
structure, has a negative value ofδ. Therefore in a uniaxial stress field, the [111] direction
of the TiN crystal should align with the stress axis.
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Table 1. Values of the components of the elastic compliance tensorsij .

Compliance Value (GPa)

s11 2.17× 10−3

s12 −0.38× 10−3

s44 5.95× 10−3

4. A cubic crystal in a biaxial stress field

For a biaxial stress field with equal principal stresses applied in thex–y plane the stress
tensor may be expressed as the sum of a hydrostatic pressure and a negative uniaxial stress
along thez-axis, thus:

σb = σh − σz (15)

where the stress tensors are respectively biaxial, hydrostatic and uniaxial alongz. This
decomposition is readily seen when the tensors are written out in full( 1

1
0

)
=

( 1
1

1

)
−

( 0
0

1

)
. (16)

We wish to evaluate the Gibbs free energy as a function of the orientation of the crystal
axes and the principal stress plane. Writing the Gibbs free energy in terms of the rotated
tensor as before,

G = G0 − 1

2
σ 2[(σ′

h − σ′
z)s(σ′

h − σ′
z)

T] (17)

G = G0 − 1

2
σ 2[σ′

hsσ′
h

T + σzsσ′
z

T − σ′
hsσ′

b

T − σ′
hsσ′

h

T]. (18)

The first term in brackets is not dependent on the orientation of the stress field relative to the
crystallographic axes, sinceσh is a unit tensor invariant under rotation. This corresponds
to the fact that the strain energy of a specimen under hydrostatic stress does not depend on
orientation. The last two terms also can be shown to be independent of orientation and can
be combined with the first term. Doing this, we have

G = G0 − 1

2
σ 2[(s11 + 2s12 + σ′

zsσ′
z

T]. (19)

The only orientation dependence occurs in the last term in the brackets, and the orientation
dependence of this is already known from the previous section. Depending on the sign of
δ the value ofG will be minimized when either the crystal [111] or [100] directions are
aligned with the uniaxial stress. Since the uniaxial stress is normal to the plane containing
the biaxial stresses, this means that, forδ negative, the [111] direction will lie normal to
the biaxial stress plane and forδ positive, the [100] direction will lie normal to the biaxial
stress plane, in order to minimizeG.

5. Application to preferred orientation in TiN

In this section, the above theoretical treatment will be applied to the case of TiN thin films.
TiN thin films of stoichiometric composition were grown using an ion plating technique
which has been described in detail elsewhere. The stress is induced by biasing the substrate
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Figure 1. The x-ray diffraction intensity as a function of scattering angle 22 in degrees for TiN
films prepared at four different bias voltages applied during deposition. The films prepared at
0 V and−300 V bias show [100] preferred orientation and the remainder show [111] preferred
orientation.

negative so that ions are accelerated onto the growing surface of the film. The level of
compressive biaxial stress could be controlled over a wide range by adjusting the bias
potential resulting from the application of rf power to the substrate table. The stress
was measured by first determining the curvature of the silicon wafer substrate resulting
from the stress in the film and then calculating the stress using the Stoney equation [9].
The value of the stress was found to be compressive and to depend on the energy of the
bombarding ions in the expected fashion, as shown in table 2. The preferred orientation of
the polycrystalline film was examined using both electron and x-ray diffraction techniques.
For electron microscopy, the films were prepared on sodium chloride substrates so that
they could readily be transferred to electron microscope grids. Electron diffraction patterns
were acquired using 300 keV electrons in an electron microscope and were obtained by
scanning the diffraction pattern from a selected area of the film over the entrance aperture
of an electron energy-loss spectrometer. When the electrons are at normal incidence to
the film, those Bragg planes lying normal to the film surface are in the reflecting position.
The specimen was tilted 50 degrees away from the beam direction to bring Bragg planes
lying at large angles to the film surface into the reflecting position. For x-ray diffraction
studies, the films were prepared on silicon wafer substrates. The 22 scans were run on a
powder diffraction camera so that Bragg planes parallel to the substrate surface were in the
reflecting position.

The results are entirely consistent with theory for a cubic substance with a negative
value of the parameterδ. At low values of the stress, the preferred orientation is with [100]
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Table 2. The dependence of the compressive biaxial stress in thin films of TiN as a function of
the bias voltage applied to the substrate. The bias voltage directly determines the energy of the
bombarding ions.

Bias (V) Stress (GPa)

0 0.1
50 5.0

100 1.5
300 0.6

Figure 2. Electron diffraction intensity as a function of distance across the diffraction pattern.
The solid curve is for normal incidence and the dotted curve is for the film tilted at 50 degrees to
the electron beam. In the latter case, the diffraction intensity is measured across the diffraction
pattern in the direction of the film normal.

normal to the film surface. The surface energy of the [100] surface is lower than that of
the other low-index faces of TiN [8] and therefore in the absence of a large contribution
from the bulk elastic energy, the surface energy will dominate. This situation applies at low
energies of bombardment (0 V bias) as well as at high energies of bombardment (−300 V
bias). At intermediate energies (−50 V and−100 V bias) the large compressive stresses
give rise to a large bulk strain energy contribution which causes the [111] direction to lie
normal to the plane of the biaxial stress. The x-ray diffraction patterns at three different bias
levels are shown in figure 1, and show the sequence of orientation changes with increasing
bias voltage. The position in 22 of the [111] reflection in the specimens at bias levels of
−50 V and−100 V is due to the effect of the biaxial stress causing an expansion normal to
the film plane. The electron diffraction patterns shown in figure 2 for the film at−100 V
bias show the effect of tilting the specimen. At normal incidence the [111], [200], and
[220] reflections are all observed. For [111] strictly normal to the film, the [111] and [200]
reflections should not be observed but will be observed if some misorientation is allowed.
This is likely to occur in practice, as the energy penalty for slight misorientation is not
large enough to prevent it. As the film is tilted, the diffraction pattern shows a changes in
the diffraction rings. The [111] ring shows pronounced arcs of high diffraction intensity
corresponding to diffraction from the [111] planes normal to the surface and also from the
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other [111] planes of crystallites constrained with a [111] direction normal to the surface.
Scans shown in figure 2 are for the electron beam at normal incidence to the film and for
the specimen tilted at 50 degrees to the beam.

The scan at the 50-degree tilt passes through the diffraction pattern in a direction
normal to the film and therefore includes the strong [111] arcs. In summary, the electron
diffraction pattern is consistent with a preferred orientation in which the [111] directions of
the crystallites are constrained to be normal to the film but otherwise all possible orientations
are allowed. This type of orientation is exactly that predicted by the theory.

6. Conclusion

The type of preferred orientation occurring in thin films grown under conditions in which
high stress levels are generated can be predicted by an equilibrium thermodynamic theory
in which the Gibbs free energy is minimized. For cubic crystalline substances the parameter
δ = s11 − s12 − 1

2s44 determines the type of behaviour expected. In the case ofδ < 0, in a
biaxial stress field, the Gibbs free energy is minimized when the [111] direction is normal
to the stress plane. In the caseδ > 0 the [100] direction is normal. The predictions are
in complete agreement with the observed type of preferred orientation in TiN films grown
with ion-bombardment-induced compressive stress.
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